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Using a quasi-stationary formulation, we investigate a boundary value problem 
on deformation of isotropic rheological media in a wedge-like region. The de- 
formation of the medium is caused by variation in the angle between the plane 
sides which together form a plane diffuser, and by the flow rate of mass through 
this diffuser. The wedge faces are assumed to be perfectly smooth. Notwith- 
standing the particular properties of the medium, we succeed in determining 
the displacement field to within a single arbitrary function independent of the 
polar angle, with all boundary conditions of the problem satisfied. We show that 
with the quasi-stationary formulation of the problem the partial derivative with 
respect to time is obtained in terms of the partial derivative with respect to the 

diffuser angle of opening and the mass flow rate, with both these quantities as- 
sumed to be variable. The formula for the partial derivative with respect to 
time enables us to express any kinematic characteristic (velocity, deformation, 
rate of deformation, etc. ) in terms of the displacements. We successfully inte- 
grate the equations of equilibrium and determine the stress field to within a 
single arbitrary function independent of the polar angle. In this manner we re- 
duce the solution of the boundary value problemsondeformation of continuous 
media in a wedge-like region with smooth faces to determining the dependence 
of two arbitrary functions on the radius, that is, after substituting the stress and 
displacement fields obtained into the defining equations of the medium in ques- 
tion. 

Some of the problems on deformation of continuous media in wedge-like 
regions have been solved. Thus we have the Hamel solution [l] of the problem 
of flow of a viscous fluid through a diffuser, and the Schield solution [2] of the 
process of extruding a rigid-plastic material through a wedge-like die. Several 
solutions of the problems on small plane deformations of a nonlinearly elastic 
wedge are given in the monograph [3]. Exact solutions of the problems oflarge 
deformations of an incompressible elastic wedge with arbitrary elastic poten- 
tial were obtained in [4]. In addition, numerous results of investigations of de- 
formation of continuous media in wedge-like regions appear in [5] and others. 
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1, Let us consider the kinematics of deformation of a contUous medium in a wedge- 
Like region when the angle of the diffuser opening varies slowly and the mass flow through 
this diffuser is given. From the cundition of smoothness of the diffuser wa&. it follows 
that the shear component J??~,J of the Almansi tensor of finitedeformations E ES] and 
the shear component 8,~ of the deformation rate tensor P; are both zero at the wedge 
faces. The tensors Eij and eij are given in terms of displacements u and velocity 

where the asterisk denotes transposition* 
Since for isotropic media the problem is symmetrical about the bisectrix of the plane 

diffuser angle, the components Ere and erO are equal to zero on this bisectrix, Thus 
the pr&Lem of deformation of a medium in a wedge of apex angle 01 is equivalent to 
the same problem for a wedge of apex angle a/2. However for a wedge of angle a/2 
the problem is again symmetric about the bisect& of the angle ~‘2 arrd consequently 
the commnts E,e and er# will also be zero on this bisectrix, Continuing this reason- 
ing we conclude that the following relation holds for arbitrary isotropic media in the 
problem under consideration: 

2er6 = &k, r + -++I- R4) - f16,JUr,* -r.+- (L21 

+ 4, )” Q%, B + 4) = 0, 2% = %, r “-I- $04, # - 4I) = 0 

Fmm the absence of shear in the material it follows that all material planes drawn through 
the wedge edge are deformed identically, and the deformation field E as wall as the 
deformation rate e are both independent of the polar angle 0, i.e. 

E = E (r)* e = e (r) (I.31 

The properties cl. 2) and (1.3) show that the material particles which were situated prior 
to deformation on the cylindrical surface r. = const, will appear after the deforma- 

tion on a new cylindrical surface r = const , while the material particles lying, prior 
to deformation, in the plane OO = const will lie, after the deformation, in some pkuze 
8 = con&. l%e~ prcyxMes of deformation of mat&at surfaces within the wedge re- 
gicm were postulated in 141. and for the displacements the following expreMons with two 
axbitrary functions fi (r) and q (0) were subsequently derived: 

fl (r) 
% = I- - r/f + cp (e) * 

fl (r) cp (Q ue = - vi f q@(e) 
W 4) 

The SubHitution of the ~pla~men~ from (1.4) into the expre&on for &Ire in (X,2), 
yields an identity, substitution of the displacements into E,, in (1. X) leads to fuifilment 
of the property (1.3) and substitution into the expression for Eee produces the following 
equation for the function cp (0) provided that &e is independent of 8 : 

atp 1 
de J&j.+ = & (1.5) 
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where B, is an arbitrary constant. The solution of (1.5) has the form 

cp = tl3 (BIO + &) (1.6) 

The nonxero components of the Almansi tensor in (1.1) are expressed in terms of a sin- 
gle arbitrary function fI (r) by the formulas 

The velocity Y is given in a polar coordinate system in terms of the displacements u 

bY 
v, = (1.8) 

We recall that we carry out this investigation, using a quasi-stationary formulation ; in 

spite of this, we cannot neglect in (L 8) the partial derivatives of displacements with 
respect to time. Clearly, if the diffuser angle cc and the quantity of mass q flowing 
through the diffuser do not vary with time, then the displacements u, and ue are also 
invariant and the velocity components v,. and ~0 vanish. Thus U, and ~0 d&end not 
only on the coordinates r and 0, but also on the parameters a and q, Le. u = 

u (r, 0, a9 q). 
The parameters cc and q depend only on time, therefore the displacements u also 

depend only on tim& in accordance with the relations a (t) and q (t). From this it fol- 
lows that the function fl and the quantities B, and B, also depend on the parameters 

a(r) aft) , i.e. fr = f~ (r, a, !?) and Bi = Bi (a, q), i = 1, 2, while the 
partial derivative with respect to time is expressed in terms of the partial derivatives 
with respect to the parameters cc and q as follows: 

Let the planes of the wedge faces be described by the equations 8, = 0 and 8s = 
a (r). From the equivalence of the deformation of the material planes we have 8 = 
const , and from the condition that the rate of shear of the material is zero it follows 
that 

ve = +re, vr = fz (4 (1.9) 

where fi is an arbitrary function independent of the angle 8. Substituting (1.4) and 
(1.9) into (1.8), we obtain the following two equations: 

(1.10) 

From the first equation of (1.10) it follows that the function f, can be written in the form 

i. e. 
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(1.11) 

The ~antities fi, B, and Bz appearing in the second equation of (1.10) are indepen- 
dent of o and Q, therefoqequating the coefficients at o and Q separately to zero, 
we obtain the following equations: 

Since B, and B2 are independent of 0, we obtain 

E%+q=tJ ~~~+!+-j 

The solution of these equations with the boundary condition a, (0) = 0 when dl (0) = 
aa ,has the form 

B, = a,/ u - 1, B, = kn, k ~0, 1, 2, ,.. 

Finally, for the function ‘p (0) we obtain the expression 

CP (0) = tg (a, / a: - $1 e t 

Thus the kinematics of deformation of an isotropic continuous medium has been com- 
pletely determined to within a single arbitrary function fi (r, a, q), which must be de- 
termined after specifying the particular properties of the material. Usually,solving the 
boundary value problem does not immediately yield the dependence of the function fi 
on the parameters a and q , and in this case the right-hand side of the expression (1.11) 
for the velocity v,. also becomes indeterminate. In such cases it is more convenient to 
use (1.9) instead of (1.11) and treat fB as the unknown function. The nonzero compo- 
nents of the rate of deformation tensor are expressed in terms of fa (r) by the formulas 

E dfz (r) 
rr=drl 

&_LLp++ 

The principal directions of the tensors E and 8 coincide with the directiona of the 
axes of the polar coordinate system. Using this we write the expression for the medium 
den&y in terms of the principal values of the Almansi tensor in the Lagrangian form [S] 

p = PO V-(1 - 2&,) (1 - 2&e) 

where PO is the initial density prior to deformation, Substituting (1.7) into this expression 
we obtain p=.z$ #$g ! I (1.12) 

Substitution of the expressions (1.9), ( 1.11) and (1.12) into the equation of continuity 
yields an identity. It remains to consider the law of conservation of the mass flowing 
through the diffuser, which plays the part of a boundary condition. In the problems of 
pressing a mass through a plane diffuser of constant angle, this law is usually written in 
the form 

Q = f pr?,rdtl (1.13) 
0 

In the present case the diffuser angle a varies with time, and this must be accounted 
for in (1.13). During the time At the diffuser angle changes by Au. Part of the mass 
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Aq = QAt f d’ o me mm which enters the diffuser, passes through the surface r = const 
and the remainder fiIls the sector of central angle A~L and radius r, i.e. 

Qht = At f pvFd9 + Aa f prdr ( i. 14) 
0 0 

At the Iimit At +- 0 (L&S) yields the required law of conservation of the mass con- 
sumed : 

Q = ~pv~de+&rdr (1.15) 
0 0 

Using (1, 11) and (1.12) we can reduce (1.15) to the form 

- Q = aopoPf1 b f$ -P Q 3) + aopoo & [#I’ - #I* @)I (1.16) 

@ = sign ( fr -$) 
Repeating the procedure used with (1.10) we equate the coefficients of Q and o in 
(1.16) separately to zero, and obtain the following two equations: 

2uf&- ft (r) - f? (6 wbfl$ = - B (1.17) 

the second of which yields 

f+C(a,r)-j$p (1.18) 

where C (a, r) is an arbitrary function. The substitution of (1.18) into the first equa- 
tion of (1.17) yields the following equation for the function’ C (a, r) : 

sac I i?a = C (a, r) - C (a, 0) (1.19) 

If no mass is consumed (q = 0), then the material particles at the wedge edge remain 
stationary when the wedge faces close, This means that the displacements are zero when 
r=q=O fl (r, a, q) = 0 for r = q = 0 (1.20) 

Setting r = q = 0, in (1.18). we find 

C (a, 0) = 0 (I, 21) 

The solution of (Ll9) with condition (1.21). has the form 

C (a, r) = f3 Cl (r) a, C, (0) = 0 (1.22) 

where C, (r) is an arbitrary unction, Substi~~ng (1.22) into (1.18), we arrive at the 
following.express.ion for fia (r, a, q) : 

f? (5 a9 q) = B [CrG (4 - so] (1.23) 

Next we establish an important property of the function c, (r) . Let us ~ffe~ntiate 
(L 23) with respect to r 2flafl I ar = f3adCl i dr (1.24) 

The sign of the lefthand side of (1.24) is the same as that of p, defined in (l.l7), there- 
fore from (1.24) it foIIows that 

dC, / dr > 0, C, (r) > 0, C, (0) = 0 (3.. 25) 
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i.e. Cr (r) is a positive monotonously increasing function. The value r = r* at which 
the right-hand side of (1.23) becomes zero 

Cl (r*) = Q 1 (wW0) (1.26) 

By virtue of (1.25), Eq. (1.26) has a unique solution only when q > 0, i. e. when the 
mass of the medium enters the diffuser through an infinitely narrow slit in its edge. When 
the process is reversed, the mass is squeezed out of the diffuser and q < 0, Eq, (1.26) 
has no solution, The radius r* separates the mass which was present in the diffuser at 
the start of the squeezing process from the mass fed into the diffuser. This follows from 
the fact that U, = r, ua = 0 when r= r* and also from the identity 

r* 

q ~a prdr s 
0 

The condition that both sides of (1.23) are positive implies that the sign of p is the 
same as that of the expression within the square brackets in (1.23). By virtue of the mo- 
notonous character of the function C, (r) we have the following relations: 

forq>O, fI=l when r>r*andb c -4 when r\<r*;forq<O, p = 1 

Substituting (1.23) into (1.4), (1.7) and (1.11) and into the expressions for a,, and eeec 
we obtain the following expressions for the displacements, the velocities and the princi- 
pal values of tensors of the deformation and rate of deformation: 

u,=r--1/Bcos (+--I)($ u,=-J07sin($-I)0 (1.27) 

B=B[G(+ $J 

v, = 2Q oC1(r) 
aoap0Cd (r) -7zqq 

24) = $r0 

0 e OCl 
rr = 

0 (ClCl” - Cl'Z) 2QC1” 2Q -- a&'* - aoap&‘a ’ eee = U -+ C&l’ aWpLVC’l’ 

From (1.27) we see that Eee --t ‘ia and E,, +- 00 when r+r*. Thismeansthat 
on approaching the surface r = r* the material elements begin to experience an unli- 
mited compression in the radial direction, and an unlimited stretching in the circumfe- 
rential direction. We also note that when the product oQ > 0, a radius r** exists 
which separates two mutually opposing flows, From the condition u, = 0 we find the 
radius r** as the root of the equation C, (r**) = 2Q / (aoopO). 

For an incompressible continuous medium we obtain, after substituting the condition 
p = PO intO (1.12), C, (r) = r2 / a0 and find, that in this case the deformation 
and the rate of deformation become constant over the whole wedge region when q = 

Q =O* 

2, Let us now investigate the stresses in the problem under consideration. We assume 
that the shear and rate of shear are zero everywhere within the region of the wedge. It 
is therefore natural to assume that in this ca the shear stress 7 in isotropic continuous 
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media will be zero: T = 0. We shall also assume that by virtue of the equivalence of 
the deformation of all material planes passing through the wedge edge, the stmsses (I 
are, similarly to the tensors E and 8 , independent of the angle 0 : u = o (r). In this 
case we can integrate the equations of equilibrium to obtain 

(2.1) 

where fs (r) is an arbitrary function of the parameters a, q of the problem, of the de- 
rivatives with respect to time, and of the physical constants that describe the material 
properties ; this fundiOn depends on the radius F only. 

The obtained expressions (1.27) and (2.1) simplify considerably the process of solving 
the boundary value problem of pressing a continuous medium through a plane diffuser 
with a variable angle. 

Let us write the defining equations for an isotropic continuous medium in the form 

(2.2) 

where FkI is an integro-differential tensor operator, Subsituting the corresponding ex- 
pressionsfrom(1.27)and(2.1)into(2.2)withk=Z=randk=1=8,weobtain 
two integro-differential equations. Since the relations (1.27) and (2.1) ensure a priori 
that the boundary conditions, the equations of equilibrium and equations of conservation 
of mass all hold, therefore the solution of these two integro-differential equations for the 
two unknown functions C, (F) and fs (F) represents the required solution of the bounc 
dary value problem in question, 
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